Learn Python

Learn Data Structure & Algorithm

Learn Numpy

Pandas Introduction

Pandas Series

Pandas DataFrame

Pandas Read Files

Pandas Some functions and properties

Pandas Math Function

Pandas Selection

Pandas Change Type

Pandas Concatenate & Split

Pandas Sorting

Pandas Filter

Pandas Data Cleaning

Pandas Group by

Pandas Time Series

Pandas Analysis 1

Pandas Analysis 2

Pandas Analysis 3

Matplotlib

Learn Seaborn

Learn Statistics

Learn Math

Learn MATLAB

Learn Machine learning

Learn Github

Learn OpenCV

Learn Deep Learning

Learn MySQL

Learn MongoDB

Learn Web scraping

Learn Excel

Learn Power BI

Learn Tableau

Learn Docker

Learn Hadoop

data analysis using pandas practical code 2

Dataset Link

Importing Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Data Collection and Data Processing

df = pd.read_csv("D:/market sales.csv")
df.head()

Gathering some information

df.shape
df.info()
df.describe()
df.columns
df.dtypes
df.nunique()

Checking For missing values

x=[]
z=[]
for i in df:
    v=df[i].isnull().sum()/df.shape[0]*100
    x.append(v)
    z.append(i)
q={"Feature Name":z,"Percentage of missing values":x,}
missingPercentageDataset=pd.DataFrame(q).sort_values(by="Percentage of missing values",ascending=False)
pd.set_option("display.max_rows",None)
missingPercentageDataset

Data Cleaning

For simplicity just dropping the nan contain columns

df.drop(["Outlet_Size"],axis=1,inplace=True)
df.drop(["Item_Weight"],axis=1,inplace=True)

Let's plot a heatmap to see correlation between data

corr=df.corr()
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidth=0.7, annot=True)
plt.show()

Let's create a pair plot

sns.pairplot(df)

Let's see the unique values of all categorical column

categorical_column=df.select_dtypes(include="object").columns
categorical_column
unique_li=[]
for i in categorical_column:
    x=[]
    y=df[i].unique()
    for z in y:
        x.append(z)
    unique_li.append(x)

un_name={}
i=1
while i< len(categorical_column):
    un_name[categorical_column[i]]=unique_li[i]
    i=i+1
un_name

Let's see which item contain lower fat and regular fat

Regular fat

regular_ft=df.Item_Fat_Content=="Regular"
rf_dt=df.loc[regular_ft,["Item_Type"]]
regular_fat_item=[]
for i in rf_dt["Item_Type"]:
    if i not in regular_fat_item:
        regular_fat_item.append(i)
    else:
        pass
regular_fat_item

Low fat

low_Fat=df.Item_Fat_Content=="Low Fat"
lf_dt=df.loc[low_Fat,["Item_Type"]]
low_fat_item=[]
for i in lf_dt["Item_Type"]:
    if i not in low_fat_item:
        low_fat_item.append(i)
    else:
        pass
low_fat_item

Let's see average outlet sells of each item

df1=df.groupby(["Item_Type"])
df2=df1["Item_Outlet_Sales"].mean()
df3=df1["Item_Outlet_Sales"].max()
df4=df1["Item_Outlet_Sales"].min()
df5=df1["Item_Outlet_Sales"].count()
dfd={"mean":df2,"max":df3,"min":df4,"count":df4}
sells_info=pd.DataFrame(dfd)
sells_info

Let's create a bar chart of item_type and item_outlet_sells

ax=sns.barplot(x="Item_Type",y="Item_Outlet_Sales",data=df,)
ax.set_xticklabels(['Dairy',
'Soft Drinks', 'Meat', 'Fruits and Vegetables', 'Household', 'Baking Goods', 'Snack Foods', 'Frozen Foods', 'Breakfast', 'Health and Hygiene', 'Hard Drinks', 'Canned', 'Breads', 'Starchy Foods', 'Others', 'Seafood'], rotation=90)
plt.xlabel("Item_Type")
plt.ylabel("Item_Outlet_Sales")
plt.show()

Getting Dataset

CodersAim is created for learning and training a self learner to become a professional from beginner. While using CodersAim, you agree to have read and accepted our terms of use, privacy policy, Contact Us

© Copyright All rights reserved www.CodersAim.com. Developed by CodersAim.